INCLUSIVE DESION




DOES PARTICIPATORY DESIGN WORK?

. NHAT PERSPECTINES WERE REPRESENTED AT YoOR TJABLE?
NHICH WERE MARGINAULIZED?

* WHO SPOKE THE MOST?

* WHO SpOKE THE LEAST?
WHOSE PERSPELTIVE WAS MOST REPRESENTED BY VOOR. SUMMARY ?

. WHOLE PERSPECTIVE WAS LEAST REPRESENTED?
. WHAT WERE POINTS oF DISASREEMENTS ? How DIDP YoO RESOLUE

THEM?
- DID YOU FEEL (OMFORTAIBLE To SPEAYL AND DISAGREE?

» D0 YOU THINE OTHER PEOPLE FELT (oM FORTABLE SPEAKING €

DISAGREE IV G ? DIP YOU CHECK?
e DID YOU UNDERSTAND OTHER PEOPLE/c PERSPECTIVES? DID You

CHeck?
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PROBLEM: WE HAVE DESIAN BLINDSPOTS

- PERSPECTIVE G6AP
. DATA &AP

e NEGILECT OF THE SoCIAL SYSTEM
SOLUTION: PARTICIPATORY Desi6nN
- DIVERSIFY THE PECISION MAKING sPace
» BUILT ON LIVE -EXPERIENCE
PROBLEH THERE ARE BARRIERS To PARTIAPATION !
- PEOPLE DON'T FEEL (OMFORTABLE PARTICIPATING

« YoU DoN'T eveN "MICRO-AGGRE SSIONY
'fr::\,f:;u 13" IHD s % v hATE- KEEPNG "
YISIBLE US W " STERED-TYPE THREAT/LIFT"
INVISIBLE » IT TAKES AWT OF woﬁz To PARTICIPATE !
Axes ofF “"(NV(sIBle LABOVR
MARGINAUZATION" Ls £MOTIOVAL , TIME. UNPAID , UNRECOONTZED

. BECAUse YOuIRE HARD To TALK Tof
UPRIVILEGE HAZRAARD "



SOLUTION: ACTWELY DISMANTLE BARRIERS! o Arriy TrcoreTion.
4. RECOGNIZE € UNDERSTAND- ' AMEWORKE

2. INTERVENE —° IDENTIFY- < INSTITUTIONAL
2, BE PREPARED To BE WRONG! "EoNAL

() RECCGNIZE ¢ YNPERSTAND

EX: BIAS vs VARIANCE

“i'ye -ALSO- HAD BAD DAYS /SET-BACLS/
STRVGGLES ]E'. [OOTIOME(EFFORT)}

?EKSO“ A % ‘"ﬂ,e‘—,
“WHEN | WORK HARD £00D THINGS 2dion:
_ HAPPEN. TO Mg , = QUTCoME (EFFORT)
B MY ADVERS(TY MADE ME STRoN RER
PERSON B — W MAYBE YOV HAD A BAD DAY")
w MAYBE THAT PERCON WHD - MIs-
v TREATED You WAC HAVIUG A 3 "E-r {0‘"“’“5“”””3}
4& BAD DAY" actione
\MAYBE ITS guST ONE BAD ) # OUTCOME (EFFORT)

APPLE "



SOLUTION: ACTNELY DISMANTLE BARRIERS/ APPLY THEORETIAAL

2. INTERVENE — IDENTIFY- :IMS’TITUT(ONAL
2, BE PREPARED T0 BE WRONG ! "EHoNAL

(1) RECGNIZE ¢ YNPERSTAND

EX: TELEOLDGICAL ¢ MODAL SCOPE FALLACIES
"It HAPPENED SD IT MUST HAVE HAD To HAPPEN "

©) ~ @ +@+.Mc%7
~ ~ — )

HARDSHIP 600D OUT(OME

TELEOLOGICAL:  BECAUSE A HAPPENED THEN B HAPPENED,
THEREFORE A cAvsed B’

MOPAL, « Because A,B RESULTS IN C,
StopPe THEREFORE A AND B ARE NECESSARY FOR C*



SOLUTION: ACTNELY DISMANTLE BARRIERS/ APPLY THEORETIAL
FRAMEW OR k.

A. RECOGNIZE € UNDERSTAND
IDENTIFY- - INSTITUTIONAL

3, BE PREPARED To BE WRONG! "EoNAL

@) RECOGNIZE ¢ YNDERSTAND

EX: INTERSECTIONALITY

"EACH EXPERIENCE OF EACH
PERSON 1s A CNON)LINEAR

(OMBO OF IDENTITIGS CBASS
ELEMENTS)”

Race

EX: MATRIX oF DOMINATION

SYSTEMS ¢ RULES

SOCIALIZATION € ENFOR(EMENT
CULTURE ¢ MEDIA

| INTER-PERSONA L
1IN TRA-PERSONA L

THIS 1S A COMPLETE & RAPH/

- MARGINALIZA TioN

AR —> LENOER
PRWILEGE PRESENTATION




