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THE POTENTIAL OF MACHINE LEARNING:
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EXAMPLES OF DATA SCIENCE FAILS:

PREDICTIVE POLICING
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A LONG HISTORY OF DESIGN FAILS:

PROBLEMS WITH DATA SUENCE IS NOT AN EXCEPTION, NOT A GLITCH, IT'S PART OF A LONG
HISTORY OF SYSTEMATIC DESIGN & DEPLOYMENT FAILS oF NON-DIGITAL TecH.

RACE AFTER TECHNOLOGY, RUHA BENJAMIN _INVISIBLE WOMEN, (ARDLINE CRIADO PERER
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WHY IS THIS HAPPENING?

BIAS IN TECH IS NOT AN AL&HORITHMIC , MATH PROBLEM, IT \S A PEOPLE ‘PRDBLEH,. IT IS AROOT
NEGLECTING THE HUMAN D)MENSION AND INEXTRICABLY LINKED WITH DNERSITY ¢ REPRE SENTATION.
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INVISIBLE WOMEN READING:

- PERSPECTIVE GAP
- DATA 6AP

- NEGLECT OF SOCIO-cuLTURAL FACTORS



DOES FAIRNESS RESEARCH FiX |T?

FAIRNESS DEFINED MATHEMATICALLY ABSENT REAL-LIFE (ONTEXT AND ENGAGEMENT OF STAKE-
HOLDERS (AN REINFORCE EXISTING BIASES AND INDUSTICES: FAIRRNESS WASHING

: REI N& THE TERMS OF ETHICAL LMITS OF ALGORITHMIC FAIRNESS
EE\-Y{?&DL %:Alil g(xﬁg‘)\?b:\ SOLUTIONS IN HEALTH CARE MACHING LEARNING
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BETTER DES|GN THROV&OH PARTICIPATION:

MACHINE LEARNING IS MAKING A MOVEMENT AWAV FROM TRADPITIONAL DESIGN FRAME WORKS .
QUESTIONS FOR ETHICAL ML

3 PARTIC\PATOR‘{ FRAMEWORKS FOR MACHINE LEARNING
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7 D * PARTIC\PATORY DE IS DESIAN
RAWHOCARE THEWSERE ) THAT AT EUN I o EpoRATE
D WHO ARE THE AFFECTED s ?l FEED BACK FROM STAKE-HOLDERS
COMMUNITIES? eciathare e
. lc)o-btssum IS A COLLABORATIVE
< b ESIGN PROCESS BTW DESIANERS
I. WHAT TYPES OF HARM CAN £ STAKE-HOLDERS
YOUR -TECH D07 s
CAN TECH FAILURES CAUSE :Eg‘:;"‘g‘g“"” 5“35""52 i
Lp WHAT KIND OF HARM AFFecra:; JTMA:AIGRJ(QEs T
CAN THE So0C10-TECHNICAL ACHIEVE SOCIAL CHANGE
SYSTEM CAUSE -\
L. WHAT TYPES OF 606D CAN LESSONS FROM PARTICIPATORY MACHINE LEARNING
Yoor TECH DO? e .
BN 3 0o A. DON'T MAKE SVSTEMS MDRE FAIR AT THE EXPENSE OF MAKING
el uKlNDS OF NEEDS THEM MORE JUST. (10 BEVOND TECHNICAL FRAMINGHS 0F
SERS HAVE HARM , E.G. ALLORITHMIc BIAS, DATA IMBALANCE.
Lo WHAT KINDS OF CONSTRANTS
D0 VOUR USERS HAVE 2. (OMMUNITIES DPERIVE MOST VALVES FROM LOCALIZED
SOLUTIONS RATHER THAN SCALATRLE , GENERALIZARLE
K. WHAT ARE YouR OWN ETHICAL bl
)
PROEESSIGNALRESPONSIBILITIGSD 3. MANY MEANINGFUL INTERVENTIONS TOWARDS MIRE
W WHAT 1S ENGINEERING ETHICS? EQUITABLE SYSTEMS ARE NON-TECHNICAL.
ﬂ
Rt Lb Do EN(MNEERS NEED ETH'CS? TOWARDS SITUATED INTERVENTIONS FOR AL&ORITHMIC EL\)U\'\'Y, KATELL ET AL

FAT* 2020



EXERCISE: ()SE THE PARTICIPATORY DESIGN

?RAMENORK To DESIGN FPROGRAMMIA 6
FOR (OMM)NITAS .

THINK ABO(]T:

- WHAT DOES THE &RAD STUDENT
COMMUNITY NEED?

+How ¢AN (OMMONITAS SUPPORT THESE NEEDS?




DOES PARTICIPATORY DESIGN WORK?

. NHAT PERSPECTINES WERE REPRESENTED AT YoOR TJABLE?
NHICH WERE MARGINAULIZED?

* WHO SPOKE THE MOST?

* WHO SpOKE THE LEAST?
WHOSE PERSPELTIVE WAS MOST REPRESENTED BY VOOR. SUMMARY ?

. WHOLE PERSPECTIVE WAS LEAST REPRESENTED?
. WHAT WERE POINTS oF DISASREEMENTS ? How DIDP YoO RESOLUE

THEM?
- DID YOU FEEL (OMFORTAIBLE To SPEAYL AND DISAGREE?

» D0 YOU THINE OTHER PEOPLE FELT (oM FORTABLE SPEAKING €

DISAGREE IV G ? DIP YOU CHECK?
e DID YOU UNDERSTAND OTHER PEOPLE/c PERSPECTIVES? DID You

CHeck?
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PROBLEM: WE HAVE DESIAN BLINDSPOTS

- PERSPECTIVE G6AP
. DATA &AP

e NEGILECT OF THE SoCIAL SYSTEM
SOLUTION: PARTICIPATORY Desi6nN
- DIVERSIFY THE PECISION MAKING sPace
» BUILT ON LIVE -EXPERIENCE
PROBLEH THERE ARE BARRIERS To PARTIAPATION !
- PEOPLE DON'T FEEL (OMFORTABLE PARTICIPATING

« YoU DoN'T eveN "MICRO-AGGRE SSIONY
'fr::\,f:;u 13" IHD s % v hATE- KEEPNG "
YISIBLE US W " STERED-TYPE THREAT/LIFT"
INVISIBLE » IT TAKES AWT OF woﬁz To PARTICIPATE !
Axes ofF “"(NV(sIBle LABOVR
MARGINAUZATION" Ls £MOTIOVAL , TIME. UNPAID , UNRECOONTZED

. BECAUse YOuIRE HARD To TALK Tof
UPRIVILEGE HAZRAARD "



